Article 10420

Title of the article

SERCA2a TRANSMEMBRANE MICROPEPTIDES-REGULATORS
(LITERATURE REVIEW) 

Authors

Bolotskaya Anastasiya Aleksandrovna, Student, First Moscow State Medical University named after I. M. Sechenov (building 2, 8 Trubetskaya street, Moscow, Russia), E-mail: NastasiaBolotskaia@mail.ru
Nikolenko Vladimir Nikolaevich, Doctor of medical sciences, professor, head of the sub-department of human anatomy, First Moscow State Medical University named after I. M. Sechenov (building 2, 8 Trubetskaya street, Moscow, Russia), E-mail: vn.nikolenko@yandex.ru
Rizaeva Negoriya Aliagaevna, Candidate of medical sciences, associate professor, sub-department of human anatomy, First Moscow State Medical University named after I. M. Sechenov (building 2, 8 Trubetskaya street, Moscow, Russia), E-mail: rizaevan@yandex.ru 

Index UDK

616.1 

DOI

10.21685/2072-3032-2020-4-10 

Abstract

The sarcoplasmic reticulum of cardiomyocytes is the main place of calcium ions’ concentration. SERCA2a, by controlling contraction and relaxation of the heart muscle by uptake calcium ions, is a convenient target for regulating the concentration of calcium ions in the cytoplasm. The effect on such transmembrane micropeptides as phospholamban, sarcolipin, as well as on the recently discovered DWORF, ALN, MLN, and ELN may be effective in overcoming the problem of improper cellular calcium processing. The review considers the main mechanisms of regulation of SERCA2a by transmembrane micropeptides and the prospects for their use in clinical medicine. 

Key words

SERCA2a, phospholamban, sarcolipin, transmembrane micropeptides 

Download PDF
References

1. Hong T., Shaw R. M. Physiol. Rev. 2017, vol. 97, no. 1, pp. 227–252.
2. Aronsen J. M., Louch W. E., Sjaastad I. Scand. Cardiovasc. J. 2016, vol. 50, no. 2, pp. 65–77.
3. Rossi A. E., Dirksen R. T. Muscle and Nerve. Muscle Nerve, 2006, vol. 33, no. 6, pp. 715–731.
4. Bers D. M. Nature. 2002, vol. 415, no. 6868, pp. 198–205.
5. MacLennan D. H., Kranias E. G. Nat. Rev. Mol. Cell Biol. 2003, vol. 4, no. 7, pp. 566–577.
6. Vangheluwe P., Schuermans M., Zádor E., Waelkens E., Raeymaekers L., Wuytack F. Biochem J. 2005, vol. 389, no. 1, pp. 151–159.
7. Nelson B. R., Makarewich C. A., Anderson D. M., Winders B. R., Troupes C. D., Wu F., Reese A. L., McAnally J. R., Chen X., Kavalali E. T., Cannon S. C., Houser S. R., Bassel-Duby R., Olson E. N. Science. 2016, vol. 351, no. 6270, pp. 271–275.
8. Anderson D. M., Makarewich C. A., Anderson K. M., Shelton J. M., Bezprozvannaya S., Bassel-Duby R., Olson E. N. Sci. Signal. 2016, vol. 9, no. 457, pp. ra119–ra119.
9. Anderson D. M., Anderson K. M., Chang C. L., Makarewich C. A., Nelson B. R., McAnally J. R., Kasaragod P., Shelton J. M., Liou J., Bassel-Duby R., Olson E. N. Cell. 2015, vol. 160, no. 4, pp. 595–606.
10. Arkin I. T., Adams P. D., MacKenzie K. R., Lemmon M. A., Brünger A. T., Engelman D. M. EMBO J. 1994, vol. 13, no. 20, pp. 4757–4764.
11. James P., Inui M., Tada M., Chiesi M., Carafoli E. Nature. 1989, vol. 342, no. 6245, pp. 90–92.
12. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. J. Biol. Chem. 1994, vol. 269, no. 4, pp. 3088–3094.
13. Simmerman H. K. B., Jones L. R. Physiol. Rev. 1998, vol. 78, no. 4, pp. 921–947.
14. Clausen J. D., McIntosh D. B., Woolley D. G., Andersen J. P. J. Biol. Chem. American Society for Biochemistry and Molecular Biology, 2011, vol. 286, no. 13, pp. 11792–11802.
15. Akin B. L., Jones L. R. Journal of Biological Chemistry. 2012, vol. 287, pp. 7582–7593.
16. Toyoshima C., Asahi M., Sugita Y., Khanna R., Tsuda T., MacLennan D. H. Proc. Natl. Acad. Sci. 2003, vol. 100, no. 2, pp. 467–472.
17. Nicolaou P., Hajjar R. J., Kranias E. G. J. Mol. Cell. Cardiol. 2009, vol. 47, no. 3, pp. 365–371.
18. Tada M., Toyofuku T. Trends Cardiovasc. Med. 1998, vol. 8, no. 8, pp. 330–340.
19. Mazzocchi G., Sommese L., Palomeque J., Felice J. I., Di Carlo M. N., Fainstein D., Gonzalez P., Contreras P., Skapura D., McCauley M. D., Lascano E. C., Negroni J. A., Kranias E. G., Wehrens X. H. T., Valverde C. A., Mattiazzi A. J. Physiol. 2016, vol. 594, no. 11, pp. 3005–3030.
20. Kaneko M., Hashikami K., Yamamoto S., Matsumoto H. and Nishimoto T. PLoS One. Public Library of Science, 2016, vol. 11, no. 12.
21. Valverde C. A., Mazzocchi G., Di Carlo M. N., A. Ciocci Pardo, Salas N., Ragone M. I., Felice J. I., Cely-Ortiz A., Consolini A. E., Portiansky E., Mosca S., Kranias E. G., Wehrens X. H. T., Mattiazzi A. Cardiovasc. Res. 2019, vol. 115, no. 3, pp. 556–569.
22. Bidwell P. A., Haghighi K., Kranias E. G. J. Biol. Chem. American Society for Biochemistry and Molecular Biology Inc. 2018, vol. 293, no. 1, pp. 359–367.
23. Lam C. K., Zhao W., Cai W., Vafiadaki E., Florea S. M., Ren X., Liu Y., Robbins N., Zhang Z., Zhou X., Jiang M., Rubinstein J., Jones W. K., Kranias E. G. Circ. Res. 2013, vol. 112, no. 1, pp. 79–89.
24. Alsina K. M., Hulsurkar M., Brandenburg S., Kownatzki-Danger D., Lenz C., Urlaub H., Abu-Taha I., Kamler M., Chiang D. Y., Lahiri S. K., Reynolds J. O., Quick A. P., Scott L., Word T. A., Gelves M. D., Heck A. J. R., Li N., Dobrev D., Lehnart S. E., Wehrens X. H. T. Circulation. 2019, vol. 140, no. 8, pp. 681–693.
25. Buffy J. J., Buck-Koehntop B. A., Porcelli F., Traaseth N. .J., Thomas D. D., Veglia G. J. Mol. Biol. 2006, vol. 358, no. 2, pp. 420–429.
26. Odermatt O. A., Taschner P. E. M., Scherer S. W., Beatty B., Khanna V. K., Cornblath D. R., Chaudhry V., Yee W. C., Schrank B., Karpati G., Breuning M. H., Knoers N., MacLennan D. H. Genomics. Academic Press Inc. 1997, vol. 45, no. 3, pp. 541–553.
27. Odermatt A., Becker S., Khanna V. K., Kurzydlowski K., Leisner E., Pette D., MacLennan D. H. J. Biol. Chem. American Society for Biochemistry and Molecular Biology. 1998, vol. 273, no. 20, pp. 12360–12369.
28. Sahoo S. K., Shaikh S. A., Sopariwala D. H., Bal N. C. and Periasamy M. J. Biol. Chem. 2013, vol. 288, no. 10, pp. 6881–6889.
29. Zhihao L., Jingyu N., Lan L., Michael S., Rui G., Xiyun B., Xiaozhi L., Guanwei F. Heart Fail. Rev. 2020, vol. 25, no. 3, pp. 523–535.
30. Bhupathy P., Babu G. J., Ito M., Periasamy M. J. Mol. Cell. Cardiol. 2009, vol. 47, no. 5, pp. 723–729.
31. Gramolini A. O., Trivieri M. G., Oudit G. Y., Kislinger T., Li W., Patel M. M., Emili A., Kranias E. G., Backx P. H., MacLennan D. H. Proc. Natl. Acad. Sci. 2006, vol. 103, no. 7, pp. 2446–2451.
32. Morales Rodriguez B., Domínguez-Rodríguez A., Benitah J.-P., Lefebvre F., Marais T., Mougenot N., Beauverger P., Bonne G., Briand V., Gómez A. M., Muchir A. Biochem. Biophys. Reports. 2020, vol. 22, p. 100767.
33. Voit A., Patel V., Pachon R., Shah V., Bakhutma M., Kohlbrenner E., McArdle J. J., Dell’Italia L. J., Mendell J. R., Xie L. H., Hajjar R. J., Duan D., Fraidenraich D., Babu G. J. Nat. Commun. 2017, vol. 8, no. 1, p. 1068.
34. Makarewich C. A., Munir A. Z., Schiattarella G. G., Bezprozvannaya S., Raguimova O. N., Cho E. E., Vidal A. H., Robia S. L., Bassel-Duby R., Olson E. N. Elife. NLM (Medline), 2018, vol. 7.
35. Singh D. R., Dalton M. P., Cho E. E., Pribadi M. P., Zak T. J., Šeflová J., Makarewich C. A., Olson E. N., Robia S. L. J. Mol. Biol. 2019, vol. 431, no. 22, pp. 4429–4443.
36. Mbikou P., Rademaker M. T., Charles C. J., Richards M. A., Pemberton C. J. Peptides. Elsevier Inc, 2020, vol. 124, p. 170192.

 

Дата создания: 20.01.2021 09:52
Дата обновления: 20.01.2021 11:01